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The multiplicative Wiener index , )(Gπ , is  equal to the product of the distances between all pairs of vertices of the 
underlying molecular graph G. In this paper we compute this index for zigzag polyhex nanotubes. 
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1. Introduction 

 
Wiener index is one of the most popular molecular-

graph-based structure-descriptors used in QSPR and 
QSAR studies [1, 2]. We recall that topological indices are 
numeral values, assigned to a molecule according to its 
size and structure and are used to study the relation 
between the structure of molecule and its chemical, 
physical and biological properties [2, 3]. Wiener index was 
the first proposed by Wiener [4] as an aid to determining 
the boiling point of paraffin. It is equal to the sum of the 
distances between all pairs of vertexes of a (molecular) 
graph. From that time, various applications of Wiener 
index in many fields of chemistry were represented [1, 2, 
5-7]. Recently Gutman et al. [8], parallel to Wiener index, 
have introduced multiplicative Wiener index equal to the 
product of distances between all pairs of vertexes. They 
studied basic properties of this index and its possible 
physicochemical applications. Also for a variety of classes 
of isomeric alkanes, monocycloalkanes, bicycloalkanes, 
benzenoid hydrocarbons, and phenylenes a very good 
(either linear or slightly curvilinear) correlation between 
Wiener and multiplicative Wiener indices [9]. For 
nanotubes, the big size of corresponding graphs makes the 
calculations complicated. Many of topological indices of 
these molecules are obtained (See [10-23]). In this paper 
we calculate the multiplicative Wiener index of zaigzag 
polyhex nanotubes (See Fig. 1). 

 
 
2. Main results and discussion 
 
Let G be a concerned simple graph (i.e. G has no 

loops, multiple or directed edges) with set of 
vertices },,{)( 1 nvvGV K= . The distance matrix 

)(GD  of G is a square matrix of order n, whose entry 
ijd is the distance, the number of edges of a shortest path, 

between the vertices iv  and jv in G. The Wiener index of 
G, )(GW , is equal to the sum of distances between all 
pairs of vertexes of G. By the above notations: 
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The multiplicative Wiener index, )(Gπ , is equal to 

the product of distances between all pairs of  vertices of 
G    
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For a vertex )(GVu ∈  we define   
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Then it is easy to see  

                  
∏
∈

=
)(

2 )()(
GVu

uG ππ                            (3)     

 
Throughout this paper G=TUH 6C [2p,q], (see Fig. 

1), denotes an arbitrary zigzag polyhex nanotorus in terms 
of the circumference 2p and the length q (see Fig 1) .  
Also we choose a coordinate label for vertices of G, as 
shown in Fig. 2. Note that G is a bipartite graph. We recall 
that a graph G is bipartite if the vertices can be colored 
with withe and black so that adjacent vertices have 
different color. 

The product of distances of one white vertex of level 0 
to the all vertices of level k, k=1, 2, ..., q-1, is given as: 
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Also  
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Fig. 2. A TUH 6C [2p,q]  Lattice with p = 8 and q = 6. 

 
Similarly, the product of distances of one black to the 

all vertex of level 0 to all vertices of level k, k=1, 2, ..., q-
1, is given as: 
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and  

                                )!1(!0 −= ppb .                               (7)                        

 
Therefore  
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We consider the tube can be built up from two halves 

collapsing at level 1. The bottom part is the graph 1G = 

TUH 6C [2p,q-1]  and we can consider 11x  as one of the 

white vertices in the first row of the graph 1G . According 
to (7) , we have 

                                          
2101311 )()( −=== qwwwxx KKππ .              (9) 

 

The top part is graph 2G = TUH 6C [2p,2q-1] and 

level 1 of graph G is the first its row and 11x   is such a 

black vertex of 2G . Therefore by (7) 
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Similarly for 12x  we obtain  
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By repeating tis argument we obtain 
 
(I) If 0 ≤ j ≤ q − 1 and j is an odd number, then  
 

.)()(
)()(

1)1(042

1)1(031

jjqjj

jjqjj

wwbbxx
bbwwxx

KKK

KKK

+−

+−

===

===

ππ

ππ  

(II) If 0 ≤ j ≤ q − 1 and j is an even number, then  
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For all 0 ≤ j ≤ q − 1, put  
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In the case of short tubes, 0 < q ≤ p, the expansion of 

(12) leads to  
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while in the case of long tubes, q ≥ p, the multiplicative  
Wiener index is evaluated by 
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Tables 1 and 2 list some values for Ln( ),( qpπ ) of  

some nanotubes. 
 

Table 1. Multiplicative Wiener index, q ≤ p. 
 

p q Ln (π (p, q)) p q Ln (π (p, q)) 
9 9 25899.55249 10 10 41602.78343 
9 8 19850.36335 10 8 25233.42172 
9 7 14700.30240 10 6 13315.26686 
9 6 10409.86108 10 5 8907.405569 
9 5 6936.600751 10 4 5463.243832 
9 4 4234.422084 10 3 2923.435223 
9 2 933.5155788 10 2 1221.245332 

 
 Table 2. Multiplicative wiener index, q ≥ p.      

 
p q Ln (π (p, q)) p q Ln (π (p, q)) 
3 3 139.4518204 4 4 589.4823124 
3 8 1738.867497 4 8 3243.433761 
3 16 9620.665755 4 16 17430.13104686 
5 5 1722.471202 6 6 4051.648489 
5 10 9043.692945 6 12 20658.81545 
5 15 23799.89256 6 18 53627.92843 
5 20 933.5155788 6 24 105125.2455 
7 7 8256.866198 8 8 15193.43107 
7 14 41255.75023 8 16 74784.45046 
7 21 106047.1987 8 24 190799.4903 
7 28 206644.7223 8 32 370085.6996 
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