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Multiplicative Wiener index of zigzag polyhex

nanotubes
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The multiplicative Wiener index , 7Z'(G) , is equal to the product of the distances between all pairs of vertices of the
underlying molecular graph G. In this paper we compute this index for zigzag polyhex nanotubes.
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1. Introduction

Wiener index is one of the most popular molecular-
graph-based structure-descriptors used in QSPR and
QSAR studies [1, 2]. We recall that topological indices are
numeral values, assigned to a molecule according to its
size and structure and are used to study the relation
between the structure of molecule and its chemical,
physical and biological properties [2, 3]. Wiener index was
the first proposed by Wiener [4] as an aid to determining
the boiling point of paraffin. It is equal to the sum of the
distances between all pairs of vertexes of a (molecular)
graph. From that time, various applications of Wiener
index in many fields of chemistry were represented [1, 2,
5-7]. Recently Gutman et al. [8], parallel to Wiener index,
have introduced multiplicative Wiener index equal to the
product of distances between all pairs of vertexes. They
studied basic properties of this index and its possible
physicochemical applications. Also for a variety of classes
of isomeric alkanes, monocycloalkanes, bicycloalkanes,
benzenoid hydrocarbons, and phenylenes a very good
(either linear or slightly curvilinear) correlation between
Wiener and multiplicative Wiener indices [9]. For
nanotubes, the big size of corresponding graphs makes the
calculations complicated. Many of topological indices of
these molecules are obtained (See [10-23]). In this paper
we calculate the multiplicative Wiener index of zaigzag
polyhex nanotubes (See Fig. 1).

2. Main results and discussion

Let G be a concerned simple graph (i.e. G has no
loops, multiple or directed edges) with set of
vertices V' (G) = {v,,...,v,}. The distance matrix
D(G) of G is a square matrix of order n, whose entry
d i is the distance, the number of edges of a shortest path,
between the vertices v, and Vv in G. The Wiener index of
G, W(G), is equal to the sum of distances between all
pairs of vertexes of G. By the above notations:

w(G)=>d,"

i<j

The multiplicative Wiener index, 7(G), is equal to

the product of distances between all pairs of vertices of
G

=) =]]4d, M

i<j
For a vertex u € V'(G) we define

w(u) = Hd(u,v) (2)

u#vel (G)

Then it is easy to see

7(G)’ = [ 3)

uel (G)

Throughout this paper G=TUH C; [2p.q], (see Fig.

1), denotes an arbitrary zigzag polyhex nanotorus in terms
of the circumference 2p and the length q (see Fig 1) .
Also we choose a coordinate label for vertices of G, as
shown in Fig. 2. Note that G is a bipartite graph. We recall
that a graph G is bipartite if the vertices can be colored
with withe and black so that adjacent vertices have
different color.

The product of distances of one white vertex of level 0
to the all vertices of level k, k=1, 2, ..., g-1, is given as:

. . (k+p)lk+ p=DI2K)" k+ 1) @
, 2 = If1<k<p
we =] [dex) =] [dxpsrx,) = @y
vl r=l (2k +1)” (2k)" Ifp<k.
Also
w, = pl(p=1)- ©)
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Figure 1. & TUHC[2p, q) nanotube
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Fig. 2. 4 TUHC6 [2p,q] Lattice withp = 8 and q = 6.
Similarly, the product of Qistances of one black to the The top part is graph G,= TUHC, [2p,2q-1] and
all vertex of level O to all vertices of level k, k=1, 2, ..., g- ) ] )
1, is given as: level 1 of graph G is the first its row and X,, is such a
black vertex of G,. Therefore by (7)
2p 2p
b, :]r:l[d(xolaxkr)=E[d(x03?xk,~): 6) g, (34,) = g, (X13) = . = byb, Since W, = b, and
\ MO (7 _T\E g (x)mg (%))
(k+p)(k+ p—D)1(2k)" 2k 1) If 1<k<p (%) = Lae g, we have
(@R’ by
(k=1 (2k)" If p<k 7(x;,) =Wy ... W, ,b, , hence
and
b _p'(p_l)' (7) ”(xll):”(x13):~..:W0...Wq72b1‘ (10)
o = D! 1
Therefore Similarly for x;, we obtain
w(x,)=7(x,)=...=by...b, ,w,- (11)
(X)) = 7(Xgy) = o =Wy oW, @® 5 o b
y repeating tis argument we obtain
7w(xy) =7(xp3) =...=byb,..b,,

(D If0<j<q-—1andjis an odd number, then
We consider the tube can be built up from two halves

collapsing at level 1. The bottom part is the graph G, = (X)) =m(X5) = .= Wy Wy )by b

J

TUH C, [2p,q-1] and we can consider X,; as one of the m(x55) =m(x;4) = = by by Wi W

. N . IIfo<j<q—1landji ber, th
white vertices in the first row of the graph G, . According {an =1=d anc] 15 afl even numbet, thetl

to (7) , we have w(x,)=7(x;)=...=by..b, ;yW ... W,

7(x,)=m(x.,)=...=w,... b ...b..
() = 7(X)3) = oo = WeW, W, - ©) (x2) = 7(x;4) Yo Watrenre2;

Forall0<j<q-—1,put
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g(]) = b() "'bq—(/'+l)W1 W/
FGY= W oty by b

Then

g-1 12
(G = []r(x) =TT (12)

X,V (G) =0
Let

[(k+ p)!(k + p =Dk (4k* =1)F
(2kh?*
Z(k) = (4k2 _I)P(Zk)zl)

y(k) =

In the case of short tubes, 0 < q < p, the expansion of
(12) leads to

g-1 q-(j+) J
2(p,@) = {(p-Dtp)y [T [Ty® Ty

while in the case of long tubes, q > p, the multiplicative
Wiener index is evaluated by

pol q-(i+D) q—(p+1) p-1 J -+
z(p,q)={(p-D!pH}" \/H[Hy(k) INEGI X\/ [T Ty Ty TT=001"

J=q-p k=1 j=0 k=1

1 1

P -G+l J
\/H[Hy(k) I @[Tzt

Tables 1 and 2 list some values for Ln(7z(p,q)) of

some nanotubes.

Table 1. Multiplicative Wiener index, q < p.

plg|In@®.q9) | p | q]| Ln@pq)
9 [ 9]25899.55249 | 10 | 10 | 41602.78343
9 [ 8]19850.36335 | 10 | 8 | 25233.42172
9 | 7] 14700.30240 | 10 | 6 | 13315.26686
9 |6 10409.86108 | 10 | 5 | 8907.405569
9 [ 5]6936.600751 | 10 | 4 | 5463.243832
9 | 4] 4234.422084 | 10 | 3 | 2923.435223
9 [ 29335155788 | 10 | 2 | 1221.245332

Table 2. Multiplicative wiener index, q > p.

q Ln (7 (p,q) q Ln (7 (p, 9)
3 | 139.4518204 4 589.4823124
8 | 1738.867497 8 3243.433761

16 | 9620.665755 16 17430.13104686

5 1722.471202 6 4051.648489

10 | 9043.692945 12 20658.81545

23799.89256 18 53627.92843

20 | 933.5155788 24 105125.2455

7 8256.866198 8 15193.43107

14 | 41255.75023 16 74784.45046

21 106047.1987 24 190799.4903

[N(A (A [Q[nfnn|n|wwlwlo
—_
W

[l fecl keel ool Ko Y Kol ko Y KoYl o) B N g}

28 | 206644.7223 32 370085.6996
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